Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Maria, Jacob | - |
dc.contributor.author | Cláudia, Neves | - |
dc.contributor.author | Danica, Vukadinović Greetham | - |
dc.date.accessioned | 2023-11-09T02:30:35Z | - |
dc.date.available | 2023-11-09T02:30:35Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | https://dlib.neu.edu.vn/handle/NEU/58815 | - |
dc.description | Mathematics | - |
dc.description | Mathematics | - |
dc.description | Statistics | - |
dc.description | Energy efficiency | - |
dc.description | Algorithms | - |
dc.description | Energy systems | - |
dc.description.abstract | The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathe | - |
dc.description.uri | Attribution 4.0 International (CC BY 4.0) | - |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | - |
dc.title | Forecasting and Assessing Risk of Individual Electricity Peaks | - |
dc.type | OER | - |
Bộ sưu tập | Toán - Tin - Thống kê (New) |
Tải ứng dụng đọc sách
Qr code NEU Book Reader
(Lưu ý: Sử dụng ứng dụng NEU Book Reader để xem đầy đủ tài liệu.
Bạn đọc có thể tải NEU Book Reader từ App Store hoặc Google play
với từ khóa "NEU Book Reader")
Trường DC | Giá trị | Ngôn ngữ |
---|---|---|
dc.contributor.author | Maria, Jacob | - |
dc.contributor.author | Cláudia, Neves | - |
dc.contributor.author | Danica, Vukadinović Greetham | - |
dc.date.accessioned | 2023-11-09T02:30:35Z | - |
dc.date.available | 2023-11-09T02:30:35Z | - |
dc.date.issued | 2020 | - |
dc.identifier.uri | https://dlib.neu.edu.vn/handle/NEU/58815 | - |
dc.description | Mathematics | - |
dc.description | Mathematics | - |
dc.description | Statistics | - |
dc.description | Energy efficiency | - |
dc.description | Algorithms | - |
dc.description | Energy systems | - |
dc.description.abstract | The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathe | - |
dc.description.uri | Attribution 4.0 International (CC BY 4.0) | - |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | - |
dc.title | Forecasting and Assessing Risk of Individual Electricity Peaks | - |
dc.type | OER | - |
Bộ sưu tập | Toán - Tin - Thống kê (New) |